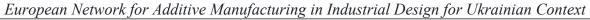


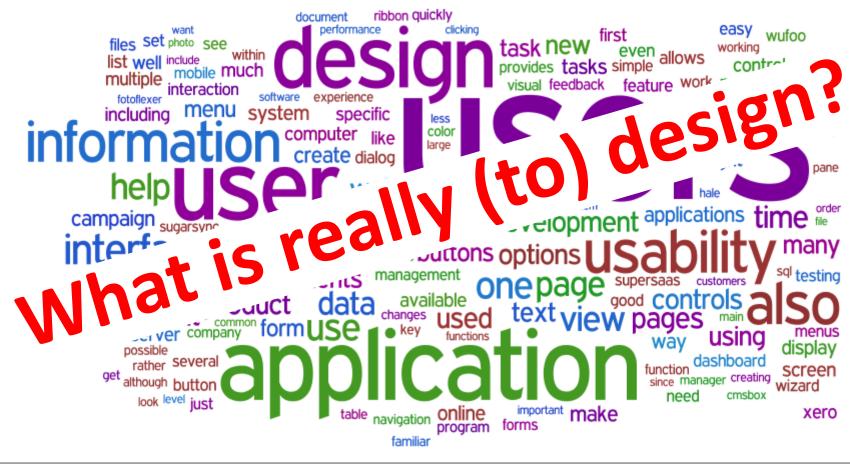
Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

DESIGN METHODS AND TECHNIQUES

Andrei DUMITRESCU Professor, PhD. Manufacturing Engineering Department, National University of Science and Technology POLITEHNICA of Bucharest





Agreement number 2023-1-RO01-KA220-HED-000155412

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Examples of definitions from scientific literature:

Design = to organise resources in order to achieve an objective

Design = to generate the concept of a system, product or service

Design = to create, execute, or construct according to a plan for a given purpose

Possible arguments between specialists:

Is a plan (methodology) really needed?

- YES, the followers of structured thinking will say.
- NO, very creative people will say.

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

There are many myths regarding design and especially the design of successful products. One such myth was built around a product with an iconic design: Juicy Salif.

Squid

Juicy Salif

"Stained" napkin

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

From an etymological point of view, the word **design** comes from the Latin **designare**, respectively assigning the character of a sign to something. From this perspective, the name "industrial design" for product aesthetics is correct, because it conveys

meanings.

Aurelia Lamp:

- luxurious
- high quality
- mysterious

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Approaches in designing / solving practical problems:

- everyday design / design-by-use / non-intentional design discovering simple solutions to design problems using resources at hand
- silent design
 - it is specific to newly established companies, which have not yet hired a professional designer, and design decisions are taken by employees from other fields
- professional design
 the result of the activity of a designer or design team that covers every aspect of product development

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Well-known rules, but which should still be mentioned:

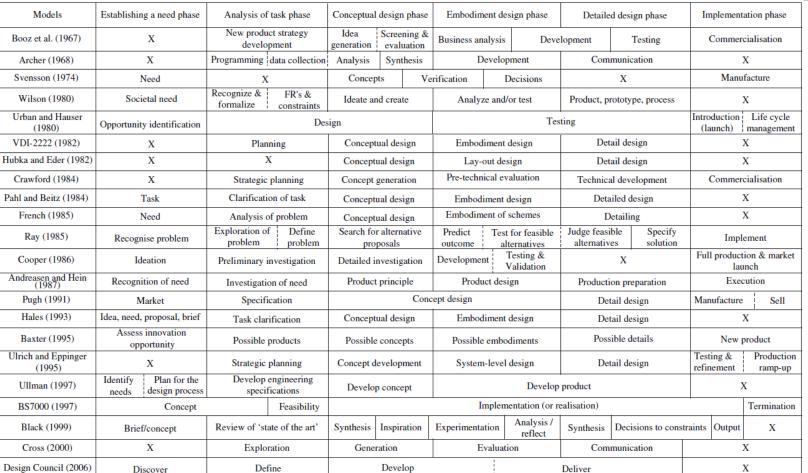
- Representatives of all relevant departments participate in product design.
- The design process covers **simultaneously** (more or less) **all aspects** of the product (mechanical, electrical, ergonomics, aesthetics, etc.) and absolutely not sequentially (for example, first the mechanical part, then the electrical part...).
- The design starts with the **functional core** and then expands to the "outside".
- Materials and (operational and manufacturing) technologies should be used with maximum efficiency.

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

A product development framework should necessarily include the following aspects:

- Understanding the company's objective, overcoming the ill-defined problems and formulating the design task
- Correct identification of the market segment that will purchase the product
- In-depth understanding of the **needs**, **desires** and **expectations** of the considered market segment
- Formulation of the value proposition (vital and customer-aware problem that the proposed product / service solves)
- Analysis of the competition for an effective differentiation of product on the market
- Elaboration of the product design specification
- (Iteratively) generation and sorting of concepts
- Concept selection and embodiment design (for very complex products)
- Detailed design
- Prototype testing (including user appropriation)



Co-funded by the European Union

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED)

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Design Phases

[Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design studies, 29(2), 160-180]

Mission statement

Industrial Innovation

Process 2006

Ideas phase

Market research

Feasibility Phase

Concept phase

Pre production

Co-funded by the European Union

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED)

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Models	Analysis phase				Generation phase				Evaluation phase	Communication / implementation phase		
Helmholtz (1826)	Saturation				Incubation		Illu	mination	Х	X		
Dewey (1910)	A felt difficulty Definition and location of difficulty			Develop some possible solutions			Implications of solutions through reasoning	Experience collaboration of conjectural solution				
Wallas (1926)	Preparation				Incubation Illumination			mination	Verification	X		
Kris (1952)	X				Inspiration				Elaboration	Communication		
Polya (1957)	Understar prob		Devising a plan		Carrying out the plan				Looking Back	X		
Guilford (1957)	X				Divergence			Convergence	X			
Buhl (1960)	Recognition	Definition	Preparation	Analysis		Synt	hesis		Evaluation	Presentation		
Osborn (1963)	Fact-finding				Idea-finding				Solution-finding	X		
Parnes (1967)	Problem, challenge opportunit	, Fact	-finding	Problem- finding	Idea-finding				Solution-finding	Acceptance-finding Action		
Jones (1970)	Divergent Search for data Understand the problem				Transformation Pattern finding Flashes of insight				Convergent Judgement	- X		
Stein (1974)	X Fact-finding				Hypothesis formulation			n	Hypothesis testing	Communication of results		
Parnes (1981)	Mess finding			Problem- finding	Idea-finding			Solution-finding	Acceptance-finding			
Amabile (1983)	Problem or task Preparation			Response generation			Response validation	Outcome				
Barron and Harrington (1981)	X				Conception Gestation Parturition		Parturition	X	Bring up the baby			
Isaksen et al. (1994)				Framing problem	Generating ideas				Developing solutions	Building acceptance	Appraising tasks	Designing process
Couger et al. (1993)	Opportunity, delineation, Compiling problem definition information			Generating ideas				Evaluating, prioritising ideas	Developing an implementation plan			
Shneiderman (2000)	Collect				Create Relate					Donate (communicate)		
Basadur et al. (2000)	Problem finding Fact finding Problem defn.				Idea finding Diverge – converge at each stage				Evaluate and select	Plan Acceptance Action		
Kryssanov et al. (2001)	Funct require	tional ements	Structural requirements		Functional sol	Functional solutions Analogies, metaphors			Reinterpretation	X		

Creative Phases

[Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design studies, 29(2), 160-180]

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

But it should be emphasized once again that **the process is not linear**, and each stage should be treated in-depth. It can be said that there are specialized methods and techniques that are suitable for each stage. Thus, someone can **classify** the design methods and techniques into four broad categories:

- documentation methods
- methods for increasing creativity
- auxiliary design methods
- actual design methods

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Documentation methods and techniques:

- competition analysis
- historical research
- collecting information from consumers (observing the product in use; questionnaire; interview; focus group; drawing / prototyping the ideal product)
- anthropological research
- sentence completion test
- user perceived value
- empathy diagram
- bio-mimicry (bionics)

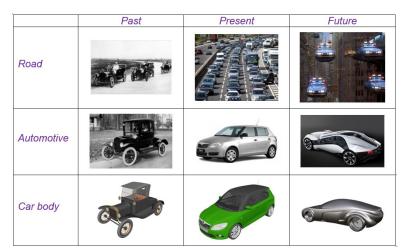
Agreement number 2023-1-RO01-KA220-HED-000155412

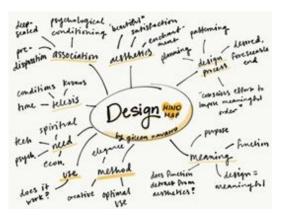
European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Methods to increase creativity:

- TRIZ
- brainstorming
- synectic method
- bisociation
- 6 thinking hats
- creative break
- creative challenge
- alternatives method
- layers method

Agreement number 2023-1-RO01-KA220-HED-000155412


European Network for Additive Manufacturing in Industrial Design for Ukrainian Context



Lustra

Auxiliary design methods and techniques:

- customer journey mapping
- character profiling
- scenario method
- mind map
- 9 windows technique
- cultural matrix
- mood board

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Actual design methods:

- Design Thinking
- User Experience Design / Interaction Design
- Participatory Design (CoDesign)
- Design for Behavioural Change
- Material Driven Design
- Design for Emotion

Methods oriented to product aesthetics:

- Kansei method
- Morphological diagram
- Grammar of forms
- Designing product significance
- Product metaphor generation
- Design for product personality

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Design Thinking:

Stages:

- 1. Understanding the problem / empathy with consumer
- 2. Definition
- 3. Ideation
- 4. Prototyping
- 5. Testing

Characteristics:

- iterative experimentation;
- searching for a better and not necessarily perfect solution;
- allows finding revolutionary solutions, not just incrementally superior to others;
- search for novelty;
- ignoring the status quo;
- seeing and doing approach;
- focus on action.

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

User Experience Design / Interaction Design

User Experience Design (UX Design) is the process of developing products that offer users a meaningful and relevant experience through the whole interaction involving observing, acquiring, using and appropriation.

Key Characteristics of User Experience Design:

- Empathy
- Strategy
- Usability
- Inclusivity
- Validation

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Participatory Design (CoDesign)

Participatory design is a design approach that:

- involves future users in all design stages, not only in the market research.
- imposes the consultation of all stakeholders associated to the product.
- requires the careful selection of the participants to the design process.
- ensure that all participants to the design process have a real say.
- all critical decisions are transparent.
- the whole design process is democratic.

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Design for Behavioural Change

This method philosophy is that the products, through the way or the context of use, determine the change in the consumers' attitude regarding harmful habits.

Harmful habits:

- driving on any occasion, even for short distances
- sedentary lifestyle
- food excess
- obtaining coffee from the machine in a single-use cup
- use of disposable glasses, cups, plates, cutlery made of any material (especially plastic)
- using a maximum and continuous flow of water when washing hands or teeth
- surfing the internet for hours out of boredom

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Design for Behavioural Change

In order to provide a pleasant conflicting feedback, a product should meet the following requirements:

- to be linked to an impulsive or automatic habit;
- to offer a much better alternative;
- to be used at the right time for attitude change;
- to disturb the user in some way so that he starts thinking.

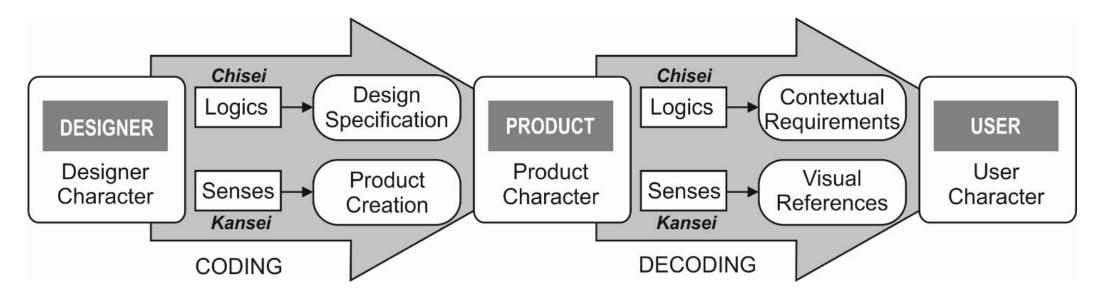
Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Material Driven Design

The materials-centred design methodology includes the following stages:

- understanding the material: technical, perceptual and semiotic characteristics
- creating a vision of the experience of using the material
- manifestation of material experience models
- designing with the material



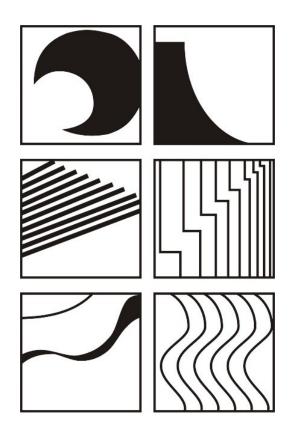
Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Kansei

Chisei means intellectual knowledge. *Kansei* represents sensory knowledge.

Agreement number 2023-1-RO01-KA220-HED-000155412


European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Kansei

Kansei Stages:

- collecting product images
- aesthetic transfiguration of product images into icon images
- establishing Kansei adjectives
- sorting icon images and Kansei adjectives
- establishing links between the icon images and Kansei adjectives
- analysis and decomposition of the shape
- synthesizing new shapes
- selection of the final shape

Agreement number 2023-1-RO01-KA220-HED-000155412

Method Assimilation

Except for some simple techniques, the methods are not easy to apply and the designer needs to assimilate the method.

Method Assimilation

Theoretical knowledge about the field

Theoretical knowledge about the method

Practical knowledge about the method

Belief that the method is effective

Confidence in own ability to use the method

Preference for using a particular method

Gaining experience in applying the method

Intuitive application of method

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Prototypes

A comprehensive classification is the following:

- conceptual model simple expression of the idea of operation;
- model for testing the principle of operation a model that only tests the basic idea
 of functioning;
- non-functional model ("visual") model that only has the role of the designer and others to observe how the product will look in the end;
- virtual model model made with a computer-aided design programme, and which can be tested virtually in different ways;
- working prototype prototype that allows testing the functioning of the product;
- ergonomic prototype prototype that allows testing how the user can use the product;
- final prototype prototype that is almost identical to the final product in all respects.

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Prototypes

Iterative prototyping implies that a large part of the product development activities is dedicated to the development of prototypes and their testing. This strategy requires attention to application from two points of view:

- costs that can become high in the case of complex products
- need to design a system for assessment the contribution made by each prototype to the understanding, development and improvement of the product.

Parallel prototyping involves different teams (or individual designers) developing a prototype separately.

Agreement number 2023-1-RO01-KA220-HED-000155412

AMAZE

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

References

Brown, Tim (2009). Change By Design, HarperCollins.

Hassenzahl, Marc; Laschke, Matthias (2015). Pleasurable troublemakers. In volumul Walz S. P., Deterding S. (ed.), *The gameful world: Approaches, issues, application*, 167-196, MIT Press.

Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. *Design studies*, 29(2), 160-180.

Karana, E., Barati, B., Rognoli, V., Zeeuw van der Laan, A. (2015). Material driven design (MDD): A method to design for material experiences, *International Journal of Design*, 9(2), 35-54.

Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Thank you for your kind attention!

Andrei DUMITRESCU

andrei.dumitrescu@upb.ro dumitrescu.andrei@yahoo.co.uk

