

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

INDUSTRIAL DESIGN – VECTOR FOR PRODUCT MEANING

Andrei DUMITRESCU

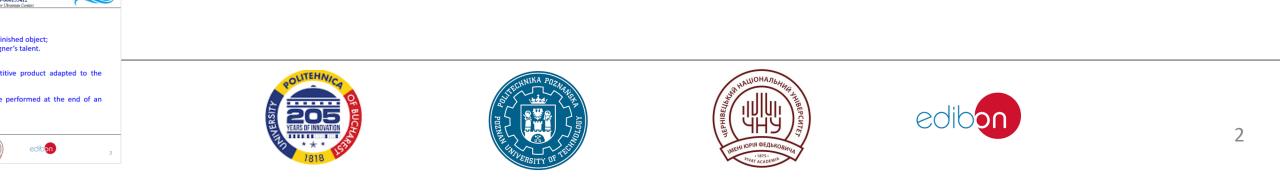
Professor, PhD. Manufacturing Engineering Department,

National University of Science and Technology POLITEHNICA of Bucharest

AMAZE

The general public and design novices believe that:

- product development is a linear process from idea to finished object;
- much of the development activities are based on designer's talent.


It is *not* the case.

Co-funded by the

European Union

Professionals know that in order to obtain a competitive product adapted to the requirements of the market segment:

- some stages should be iterative,
- an assessment phase of the stage results should be performed at the end of an iteration.

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Examples of definitions from scientific literature:

Design = to organise resources in order to achieve an objective
Design = to generate the concept of a system, product or service
Design = to create, execute, or construct according to a plan for a given purpose

Possible arguments between specialists: Is a plan (methodology) really needed?

- YES, the followers of structured thinking will say.
- NO, very creative people will say.

Co-funded by the

European Union

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412 European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

There are many **myths** regarding design and especially the design of successful products. One such myth was built around a product with an iconic design: **Juicy Salif**.

Squid

Juicy Salif

"Stained" napkin

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412 European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

From an etymological point of view, the word **design** comes from the Latin **designare**, respectively assigning the character of a sign to something. From this perspective, the name "industrial design" for product aesthetics is correct, because it conveys meanings.

Aurelia Lamp:

- luxurious
- high quality
- mysterious

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412 European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Approaches in designing / solving practical problems:

- everyday design / design-by-use / non-intentional design discovering simple solutions to design problems using resources at hand
- silent design
 - it is specific to newly established companies, which have not yet hired a professional designer, and design decisions are taken by employees from other fields
- professional design

the result of the activity of a designer or design team that covers every aspect of product development

Well-known rules, but which should still be mentioned:

- Representatives of all relevant departments participate in product design.
- The design process covers **simultaneously** (more or less) **all aspects** of the product (mechanical, electrical, ergonomics, aesthetics, etc.) and absolutely not sequentially (for example, first the mechanical part, then the electrical part...).
- The design starts with the **functional core** and then expands to the "outside".
- Materials and (operational and manufacturing) technologies should be used with maximum efficiency.

A product development framework should necessarily include the following aspects:

- Understanding the company's objective, overcoming the ill-defined problems and formulating the design task
- Correct identification of the market segment that will purchase the product
- In-depth understanding of the needs, desires and expectations of the considered market segment
- Formulation of the value proposition (vital and customer-aware problem that the proposed product / service solves)
- Analysis of the competition for an effective differentiation of product on the market
- Elaboration of the product design specification
- (Iteratively) generation and sorting of concepts
- Concept selection and embodiment design (for very complex products)
- Detailed design
- Prototype testing (including user appropriation)

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

			0 0 0										
Models	Establishing a need phase	Analysis of tas	k phase	Conceptual design phase		Embodiment design phase			Detaile	Im	Implementation phase		
Booz et al. (1967)	Х	New product strategy development		Idea Screening & generation evaluation		Business and	analysis Deve		lopment Testing		(Commercialisation	
Archer (1968)	Х	Programming dat	a collection	Analysis	Synthesis	Development		Communication		X			
Svensson (1974)	Need	Х		Concep	ts Ve	rification Decisions		Х		Manufacture			
Wilson (1980)	Societal need	Recognize & formalize c	FR's & constraints	Ideate and create		Analyze and/or test		Product, pr		Х			
Urban and Hauser (1980)	Opportunity identification		Des	sign		Tes			ting	Introduction Life cycle (launch) management			
VDI-2222 (1982)	Х	Plannin	g	Conceptual design		Embodiment design		Detail design			X		
Hubka and Eder (1982)	Х	Х		Conceptual design		Lay-out design		Detail design		X			
Crawford (1984)	Х	Strategic pla	nning	Concept generation		Pre-technical evaluation		Technical development		Commercialisation			
Pahl and Beitz (1984)	Task	Clarification	of task	Conceptual design		Embodiment design		Detailed design		Х			
French (1985)	Need	Analysis of p	roblem	Conceptual design		Embodiment of schemes		Detailing		Х		x	
Ray (1985)	Recognise problem	Exploration of Define problem problem		Search for alternative proposals		Predict Test for feasible outcome alternatives		Judge feasible Specify alternatives solution		Implement			
Cooper (1986)	Ideation	Preliminary investigation		Detailed investigation		Developmen		Testing & X Validation		X Full		ull production & market launch	
Andreasen and Hein (1987)	Recognition of need	Investigation of need		Product principle		Product design		Production preparation		Execution		ution	
Pugh (1991)	Market	Specification		Conc		cept design		Detail design		Man	ufacture	Sell	
Hales (1993)	Idea, need, proposal, brief	Task clarification		Conceptual design		Embodiment design		Detail design		X			
Baxter (1995)	Assess innovation opportunity	Possible products		Possible concepts		Possible embodiments		Possible details		New product			
Ulrich and Eppinger (1995)	Х	Strategic planning		Concept development		System-level design		Detail design			ng & ement	Production ramp-up	
Ullman (1997)	Identify Plan for the needs design process	Develop engineering specifications		Develop concept		Develop		product		X			
BS7000 (1997)	Concept	Feasibility				Implementation (or re		ealisation)				Termination	
Black (1999)	Brief/concept	Review of 'state of the art'		Synthesis	Inspiration	Experimentat	tion	Analysis / reflect	Synthesis	Decisions to cons	traints	Output	Х
Cross (2000)	Х	Exploration		Generation		Evaluation		Communication			Х		
Design Council (2006)	Discover	Define		Develop				Deliver			Х		
Industrial Innovation Process 2006	Mission statement	nt Market research		Ideas phase		Concept phase		Feasibility Phase			Pre production		

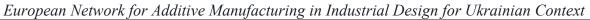
Design Phases

[Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). *Describing the creative design process by the integration of engineering design and cognitive psychology literature*. Design studies, 29(2), 160-180]

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Models	Analysis phase				Generation p	hase	Evaluation phase	Communication / implementation phase							
Helmholtz (1826)) Saturation			Incubation Illumination		X	Х			Creative Phases					
Dewey (1910)	A felt difficulty Definition and location of difficulty			Develop some possible solutions			Implications of solutions through reasoning	Experience collaboration of conjectural solution			-				
Wallas (1926)	as (1926) Preparation			Incubation Illumination			Verification	Х			[Howard, T. J., Culley,				
Kris (1952)	is (1952) X			Inspiration			Elaboration	Communication			S. J., & Dekoninck, E.				
Polya (1957)	(1957) Understanding the problem Devising a plan			Carrying out the plan			Looking Back	Х			(2008). Describing the				
Guilford (1957)	Guilford (1957) X			Divergence			Convergence	х			creative design process				
Buhl (1960)	Recognition	Recognition Definition Preparation Analysis			Synthesis			Evaluation	Presentation			by the integration of			
Osborn (1963)	Fact-finding				Idea-finding			Solution-finding	Х			engineering design			
Parnes (1967)	Problem, challenge, opportunity		Fact-finding Problem- finding		Idea-finding			Solution-finding	Acceptance-finding Action		Action	and cognitive			
Jones (1970)			ergent		Transformation			Convergent	X			psychology literature.			
	Search for data Understand the problem		Pattern finding Flashes of insight			Judgement	ļļ								
Stein (1974)			Hypothesis formulation			Hypothesis testing	Communication of results			Design studies, 29(2),					
Parnes (1981)	Mess findir	~		Problem- finding		Idea-findin	g	Solution-finding	Acceptance-finding			160-180]			
Amabile (1983)	Problem present		Prep	aration	Response generation		Response validation	Outcome							
Barron and Harrington (1981)		X Conception Gestation Parturition		х	Bring up the baby										
Isaksen et al. (1994)	Constructing opportunitie		ploring data	Framing problem	Generating ideas De		Developing solutions	Building acceptance	Appraising tasks	Designing process					
Couger et al. (1993)	Opportunity, problem of			mpiling ormation	Generating ideas			Evaluating, prioritising ideas	Developing an implementation plan						
Shneiderman (2000)		Co	ollect		Relate		Create		Dona	ate (communica	ite)				
Basadur et al. (2000)	Problem findi	ng Fact	finding P	roblem defn.	Idea finding Diverge – converge at each stage			Evaluate and select	Plan Acceptance Action						
Kryssanov et al. (2001)	Functi require			ictural rements	Functional solutions Analogies, metaphors			Reinterpretation	X						



Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

But it should be emphasized once again that **the process is not linear**, and each stage should be treated in-depth. It can be said that there are specialized methods and techniques that are suitable for each stage. Thus, someone can **classify** the design methods and techniques into four broad categories:

documentation methods

Co-funded by the

European Union

- methods for increasing creativity
- auxiliary design methods
- actual design methods

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412 European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Documentation methods and techniques:

competition analysis

Co-funded by the

European Union

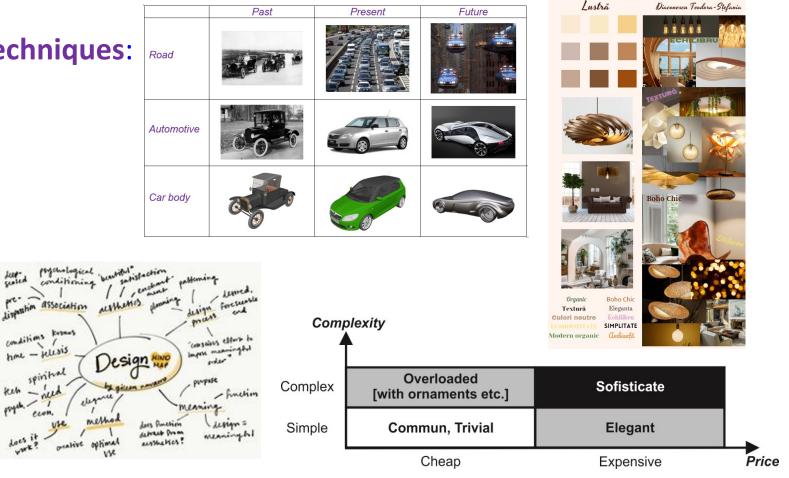
- historical research
- collecting information from consumers (observing the product in use; questionnaire; interview; focus group; drawing / prototyping the ideal product)
- anthropological research
- sentence completion test
- user perceived value
- empathy diagram
- bio-mimicry (bionics)

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Methods to increase creativity:

- TRIZ
- brainstorming
- synectic method
- bisociation
- 6 thinking hats
- creative break
- creative challenge
- alternatives method
- layers method


Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Auxiliary design methods and techniques:

- customer journey mapping
- character profiling
- scenario method
- mind map
- 9 windows technique
- cultural matrix
- mood board

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412 European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Actual design methods:

- Design Thinking
- User Experience Design / Interaction Design
- Participatory Design (CoDesign)
- Design for Behavioural Change
- Material Driven Design
- Design for Emotion

Methods oriented to product aesthetics:

- Kansei method
- Morphological diagram
- Grammar of forms
- Designing product significance
- Product metaphor generation
- Design for product personality

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Design Thinking:

Stages:

- 1. Understanding the problem / empathy with consumer
- 2. Definition
- 3. Ideation
- 4. Prototyping
- 5. Testing

Characteristics:

- iterative experimentation;
- searching for a better and not necessarily perfect solution;
- allows finding revolutionary solutions, not just incrementally superior to others;
- search for novelty;
- ignoring the status quo;
- seeing and doing approach;
- focus on action.

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

User Experience Design / Interaction Design

Co-funded by the

European Union

User Experience Design (UX Design) is the process of developing products that offer users a meaningful and relevant experience through the whole interaction involving observing, acquiring, using and appropriation.

Key Characteristics of User Experience Design:

- Empathy
- Strategy
- Usability
- Inclusivity
- Validation

Participatory Design (CoDesign)

Participatory design is a design approach that:

- involves future users in all design stages, not only in the market research.
- imposes the consultation of all stakeholders associated to the product.
- requires the careful selection of the participants to the design process.
- ensure that all participants to the design process have a real say.
- all critical decisions are transparent.
- the whole design process is democratic.

Design for Behavioural Change

This method philosophy is that the products, through the way or the context of use, determine the change in the consumers' attitude regarding harmful habits. Harmful habits:

- driving on any occasion, even for short distances
- sedentary lifestyle
- food excess
- obtaining coffee from the machine in a single-use cup
- use of disposable glasses, cups, plates, cutlery made of any material (especially plastic)
- using a maximum and continuous flow of water when washing hands or teeth
- surfing the internet for hours out of boredom

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

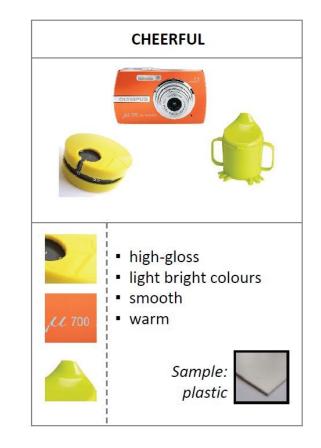
Design for Behavioural Change

Co-funded by the

European Union

In order to provide a pleasant conflicting feedback, a product should meet the following requirements:

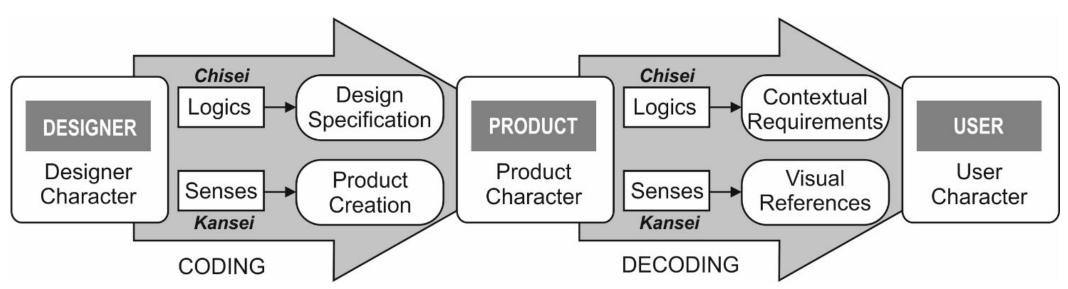
- to be linked to an impulsive or automatic habit;
- to offer a much better alternative;
- to be used at the right time for attitude change;
- to disturb the user in some way so that he starts thinking.


Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412 European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Material Driven Design

The materials-centred design methodology includes the following stages:

- understanding the material: technical, perceptual and semiotic characteristics
- creating a vision of the experience of using the material
- manifestation of material experience models
- designing with the material



Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Kansei

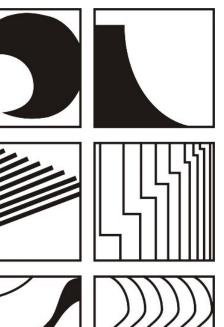
Chisei means intellectual knowledge. *Kansei* represents sensory knowledge.

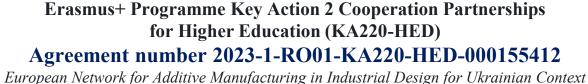
Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Kansei

Kansei Stages:


- collecting product images
- aesthetic transfiguration of product images into icon images
- establishing Kansei adjectives
- sorting icon images and Kansei adjectives
- establishing links between the icon images and Kansei adjectives
- analysis and decomposition of the shape
- synthesizing new shapes
- selection of the final shape



Method Assimilation

Except for some simple techniques, the methods are not easy to apply and the designer needs to assimilate the method.

Method Assimilation
Theoretical knowledge about the field
Theoretical knowledge about the method
Practical knowledge about the method
Belief that the method is effective
Confidence in own ability to use the method
Preference for using a particular method
Gaining experience in applying the method
Intuitive application of method

Prototypes

- A comprehensive classification is the following:
- conceptual model simple expression of the idea of operation;
- model for testing the principle of operation a model that only tests the basic idea of functioning;
- non-functional model ("visual") model that only has the role of the designer and others to observe how the product will look in the end;
- virtual model model made with a computer-aided design programme, and which can be tested virtually in different ways;
- working prototype prototype that allows testing the functioning of the product;
- ergonomic prototype prototype that allows testing how the user can use the product;
- final prototype prototype that is almost identical to the final product in all respects.

Prototypes

Iterative prototyping implies that a large part of the product development activities is dedicated to the development of prototypes and their testing. This strategy requires attention to application from two points of view:

- costs that can become high in the case of complex products
- need to design a system for assessment the contribution made by each prototype to the understanding, development and improvement of the product.

Parallel prototyping involves different teams (or individual designers) developing a prototype separately.

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412 European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

References

Co-funded by the

European Union

Brown, Tim (2009). *Change By Design*, HarperCollins.

- Hassenzahl, Marc; Laschke, Matthias (2015). Pleasurable troublemakers. In volumul Walz S. P., Deterding S. (ed.), *The gameful world: Approaches, issues, application*, 167-196, MIT Press.
- Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. *Design studies*, 29(2), 160-180.
- Karana, E., Barati, B., Rognoli, V., Zeeuw van der Laan, A. (2015). Material driven design (MDD): A method to design for material experiences, *International Journal of Design*, 9(2), 35-54.

Erasmus+ Programme Key Action 2 Cooperation Partnerships for Higher Education (KA220-HED) Agreement number 2023-1-RO01-KA220-HED-000155412

European Network for Additive Manufacturing in Industrial Design for Ukrainian Context

Thank you for your kind attention!

Andrei DUMITRESCU

andrei.dumitrescu@upb.ro dumitrescu.andrei@yahoo.co.uk

